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Introduction
Electroencephalograms (EEGs) can record electrical
activity in the brain. In conjunction with a brain-
computer interface (BCI) they can be used to augment
human sensory functions or control robotic devices.

In this project we use EEG inputs to classify which
of three tasks a subject is performing :

• Thinking about moving their left hand
• Thinking about moving their right hand
• Thinking about words beginning with a certain

letter.

Figure 1: A demonstration of a brain-computer interface.

Feature Selection
• A validation set was used to assess the perfor-

mance of models with different numbers of fea-
tures.

• Dimensionality reduction using PCA reduced ac-
curacy on the validation set.

• Instead, random forests were used to rank the im-
portance of the variables in the classification task.

• The minimum number of features that had accu-
racy within one standard deviation of the max
were kept.
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Figure 2: Classification accuracy vs number of features for
each subject.

Classification and Smoothing
Figure 3: Classification using random forests with varying de-
grees of smoothing. Plots produced using subject 1 and RF clas-
sification with the full feature set.
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Random Forests

• Random forests were used to classify each data
point in the test set.

• Smoothing these predictions by choosing the most
commonly occurring classification in a certain time
window is a straightforward way of improving ac-
curacy.

• In order to guarantee fast response times, the com-
petition insists that the classifier only averages over
the last half second of data.

• Figure 3 shows that smoothing over a longer time
window (5s) is beneficial.

Hidden Markov Model

• Hidden Markov Models were used as an alterna-
tive classifier: HMMs with two hidden states were
trained for each class c.

• sequences (xt, ..,xt+k) can be classified as
arg maxc p(xt, ..,xt+k | c).
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Experimental Design
• EEG Data was collected for 3 subjects across 4 ses-

sions each with sessions lasting 4 minutes.

• Subjects performed a task for 15-18 seconds before
switching randomly at the operator’s request.

• The first 3 sessions for each subject were used for
model training, and the final session was used for
testing.

• Models could be trained separately for each sub-
ject. In practice generalisation across subjects is
not required.

• The data and the task are taken from dataset V
of the "BCI Competition III", which provides 5
datasets with the aim of testing signal processing
and classification methods for BCIs [2].

Features
• The raw data consists of 32 EEG potentials ac-

quired at a rate of 512 Hz.
• The competition organisers provided processed

features which consist of the power spectral den-
sity (PSD) in the band 8-30Hz for 8 centro-parietal
channels.
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Figure 4: Input features for subject 1 at the first time point. The
numbers 1 - 8 correspond to the 8 centro-parietal bands.

Results
Subject

Classifier 1 2 3 Overall

F RF 0.75 0.61 0.40 0.59
RF 0.5s 0.76 0.65 0.42 0.61
RF 5s 0.86 0.68 0.50 0.68
HMM 0.5s 0.50 0.39 0.37 0.42
HMM 5s 0.52 0.37 0.34 0.41

R RF 0.72 0.60 0.42 0.58
RF 0.5s 0.76 0.65 0.41 0.61
RF 5s 0.86 0.79 0.53 0.73

Table 1: Classification accuracy on the test sets for each classi-
fier. Classifiers are divided into those using all the features (F)
and reduced feature sets (R). Overall accuracy is the mean sub-
ject accuracy for a classifier. Top performing classifier in red,
top performing classifier within competition spec in blue.

• Classifier accuracy is quite variable across subjects:
Subject 1 produced good results for most of the
classifiers whereas subject 3’s activities were more
difficult to classify.

• The greatest overall accuracy was achieved by the
random forest classifier with the reduced input fea-
tures and with smoothing on 5 second blocks.

• For classifiers within the specification of the com-
petition, random forests on both the full feature
and reduced feature space had the best perfor-
mance.

• The performance of the hidden markov models on
0.5s and 5s blocks was poor. A next step is to use
priors to regularize the emission and transition dis-
tribution parameters in an attempt to improve gen-
eralisation.


